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Abstract

The effects of localized cooling/heating and injection/suction on the mixed convection flow on a thin vertical cylinder

have been studied. The localized cooling/heating and (or) injection/suction introduce a finite discontinuity in the

mathematical formulation of the problem which increases its complexity. In order to overcome this difficulty, a non-

uniform distribution of wall temperature (heat flux) and surface mass transfer is considered at certain sections of the

cylinder. The nonlinear coupled parabolic partial differential equations governing the mixed convection flow under

boundary layer approximations have been solved numerically by using an implicit finite-difference scheme. The effects

of the localized cooling/heating and (or) injection/suction on the heat transfer are found to be significant, but the effects

of cooling/heating on the skin friction are comparatively small. The positive buoyancy force which assists the flow and

the curvature parameter increase the skin friction and heat transfer.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The combined forced and free convection flow

(mixed convection flow) is encountered in several in-

dustrial and technical applications such as nuclear re-

actors cooled during emergency shutdown, electronics

devices cooled by fans, heat exchangers placed in a low-

velocity environment, solar central receivers exposed to

wind currents, etc.

Flow over cylinders is considered to be two-dimen-

sional if the body radius is large compared to the

boundary layer thickness. For a thin or slender cylinder,

the radius of the cylinder may be of the same order as

the boundary layer thickness. Therefore, the flow may

be considered as axisymmetric instead of two-dimen-

sional. In this case, the governing equations contain the

transverse curvature term which influences both the ve-

locity and temperature fields. The effect of the transverse
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curvature is important in certain applications such as

wire or fibre drawing where accurate prediction of flow

and heat transfer is required and thick boundary layer

can exist on slender or near slender bodies.

There are only a few papers in the literature that deal

with mixed convection flow over vertical cylinders. Chen

and Mucoglu [1] were the first to study such a problem

for a uniform wall temperature case. Subsequently,

Mucoglu and Chen [2] considered the same problem for

the uniform surface heat flux case. In both cases, solu-

tions of the governing boundary layer equations were

obtained by the local nonsimilarity method [3,4]. Bu and

Cebeci [5] and Wang and Kleinstrever [6] considered the

same problem for the case of uniform wall temperature

and solved the governing boundary layer equations by

using a finite-difference scheme [7] based on the central

difference scheme (Keller box method). In the above

studies, the effect of buoyancy force on the forced con-

vection flow was considered. Lee et al. [8,9] investigated

the same flow configuration under uniform surface

temperature and heat flux conditions for the entire range

of mixed convection, from pure forced convection at

one end to pure free convection at the other end. The
ed.
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Nomenclature

Cfx local skin friction coefficient

f reduced stream function

f 0 ð¼ F Þ dimensionless velocity

g local gravitational acceleration (m s�2)

Grx, Gr�x local Grashof numbers for the VWT and
VHF cases, respectively

GrR, Gr�R Grashof numbers with respect to R for the
VWT and VHF cases, respectively

H dimensionless dependent variable

k thermal conductivity of the fluid (Wm�1 K)

m dimensionless mass transfer

Nux local Nusselt number

Pr Prandtl number

qw surface heat flux (Wm�2)

q0 constant heat flux at the surface (Wm�2)

r radial coordinate (m)

R radius of the cylinder (m)

Rex, ReR Reynolds numbers defined with respect to x
and R, respectively

T temperature (K)

T0 constant temperature (K)

u, v axial and radial velocity components (m s�1)

x axial coordinate (m)

Greek symbols

a thermal diffusivity (m2 s�1)

b volumetric coefficient of thermal expansion

(K�1)

g, n, g�, n� transformed coordinates

n1 dimensionless curvature

l coefficient of viscosity (kgm�2 s�1)

h dimensionless temperature

k, k� buoyancy parameters defined in Eqs. (5) and

(12)

m kinematic viscosity (m2 s�1)

q density (kgm�3)

w stream function (m3 s�1)

�1, �2, �3 dimensionless constants

Subscripts

r, x denotes derivatives with respect to r and x,
respectively

w, 1 denote conditions at the wall and in the free

stream, respectively

Superscript
0 prime denotes derivative with respect to g
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governing boundary layer equations were solved by a

stable finite-difference method [10] in conjunction with

the cubic spline interpolation scheme [11] to overcome

the difficulties that arise from the stiffness of the equa-

tions. Na and Pop [12] have studied the flow and heat

transfer characteristics on the longitudinal cylinder

which moves parallel or reversely to a free stream and

solved the governing equations by an implicit finite-

difference scheme. Takhar et al. [13] have considered the

mixed convection flow over a vertical thin cylinder due

to the combined effect of the thermal and mass diffusion.

Both uniform wall temperature and uniform wall heat

flux conditions were included in the analysis. The gov-

erning boundary layer equations were solved by using an

implicit finite-difference scheme. In mixed convection

flows, the positive buoyancy force and the transverse

curvature tend to increase the heat transfer as well as the

skin friction. However, it is possible to reduce the skin

friction and heat transfer by localized cooling of the

surface. It is more practical as well as economic to cool a

portion of the surface instead of the entire surface.

Similarly, injection or suction can be applied only in a

certain portion of the surface rather than on the entire

surface. If the entire surface is made permeable, the

body will become structurally weak.

In this paper, we consider the effects of cooling/

heating and (or) injection/suction at certain sections of
the body surface on the steady laminar mixed convec-

tion flow over a vertical thin cylinder. It may be re-

marked that the increase or reduction of wall

temperature (heat flux) or mass transfer (injection/suc-

tion) in a certain section of the surface introduces a

discontinuity at the leading and trailing edges of the slot.

This causes certain difficulties in the numerical solution

of the governing equations. In order to overcome this

difficulty, we have chosen a function representing the

distribution of the wall temperature (heat flux) or mass

transfer in the slot which varies slowly with the

streamwise distance and is continuous in the slot (in-

cluding the leading and trailing edges of the slot). Both

variable wall temperature (VWT) and variable wall heat

flux (VHF) conditions have been considered. The cou-

pled nonlinear parabolic partial differential equations

governing the mixed convection flow have been solved

numerically by using an implicit finite-difference scheme

similar to that of Blottner [14]. The results in the absence

of wall cooling/heating and injection/suction have been

compared with those of Chen and Mucoglu [1] and

Mucoglu and Chen [2]. This investigation may be useful

in the cooling of nuclear reactors during emergency

shutdown, where a part of the surface can be cooled by

injecting a coolant. The reactor can also be cooled by

removing the heat source through a certain portion of

the surface.
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2. Analysis

Let us consider a thin vertical circular cylinder of

radius Rmaintained at temperature Tw or at heat flux qw.
Let u1 and T1 be the velocity and temperature in the

free stream. The radial coordinate r is measured from
the axis of the cylinder and the axial coordinate x is
measured vertically upwards such that x ¼ 0 corre-

sponds to the leading edge, where the boundary layer

thickness is zero. Fig. 1 shows the physical model and

coordinate system. The fluid properties are assumed to

be constant except the density changes which give rise to

the buoyancy forces. The surface of the cylinder is

maintained at a constant temperature T0 except in cer-
tain portions of the cylinder ½xi; xj	 where it varies slowly
with the streamwise distance x. There is no mass transfer
(suction/injection) on the surface except in the interval

½xi; xj	 where it varies slowly with the distance x. The
viscous dissipation has been neglected in the energy

equation. It is assumed that the injected gas possesses

the same physical properties as the boundary layer gas

and has a static temperature equal to the wall temper-

ature. Under the above assumptions, the equations of

continuity, momentum and energy under boundary

layer approximations governing the mixed convection

flow over a thin vertical cylinder can be expressed as

[1,2,8,9]

ðruÞx þ ðrvÞr ¼ 0; ð1Þ

uux þ vur ¼ ðm=rÞðruÞr þ gbðT � T1Þ; ð2Þ

uTx þ vTr ¼ ða=rÞðrTrÞr: ð3Þ
Fig. 1. Physical model and coordinate system.
The boundary conditions for both VWT and VHF

conditions are the no-slip conditions at the wall and the

free stream conditions far away from the surface and

these conditions are given by

uðR; xÞ ¼ 0; uð1; xÞ ¼ u1; T ð1; xÞ ¼ T1;

uðr; 0Þ ¼ u1; T ðr; 0Þ ¼ T1; r > R;

vðR; xÞ ¼ vwðxÞ for xi 6 x6 xj;

vðR; xÞ ¼ 0 for 06 x6 xi; xP xj;

T ðR; xÞ ¼ TwðxÞ for xi 6 x6 xj;

T ðR; xÞ ¼ T0 for 06 x6 xi; xP xj;

�

ðVWT caseÞ
oT ðR; xÞ=or ¼ �qwðxÞ=k for xi 6 x6 xj;

oT ðR; xÞ=or ¼ �q0=k for 06 x6 xi; xP xj;

�

ðVHF caseÞ
ð4Þ

Here r and x are distances along the radial and axial
directions, respectively, u and v are the velocity com-
ponents along x and r directions, respectively, T is the
temperature, g is the magnitude of the acceleration due
to gravity, b is the volumetric coefficient of thermal ex-
pansion, a is the thermal diffusivity, m is the kinematic
viscosity, qw is the local surface heat transfer rate per
unit mass, R is the radius of the cylinder, k is the thermal
conductivity, q is the density, T0 and q0 are the constant
wall temperature and constant wall heat flux, respec-

tively, the subscripts r and x denote derivatives with
respect to r and x, respectively, and the subscripts w and
1 denote conditions at the wall and in the free stream,

respectively.

It is convenient to reduce the number of equations

from three to two as well as to transform them to di-

mensionless form. This can be done by applying the

following transformations:

n ¼ x=R; g ¼ ð2xRÞ�1ðr2 � R2ÞðRexÞ1=2;
Rex ¼ u1x=m; Pr ¼ m=a;

u ¼ r�1ow=or; v ¼ �r�1ow=ox;

Grx ¼ gbðT0 � T1Þx3=m2;

wðr; xÞ ¼ Ru1xðRexÞ�1=2f ðn; gÞ �
Z x

0

rvw dx;

T ðr; xÞ � T1 ¼ ðT0 � T1Þhðn; gÞ;
ReR ¼ u1R=m; Rex ¼ nReR;

n1 ¼ 2n1=2ðReRÞ�1=2; k ¼ GrR=Re2R;

GrR ¼ gbðT0 � T1ÞR3=m2;

m ¼ ðvw=u1ÞRe1=2R ;

ðvw=u1ÞRe1=2R ¼ �1ðn � niÞðnj � nÞðnj � niÞ�2

for ni 6 n6 nj;

vw=u1 ¼ 0 for 06 n6 ni; nP nj:

ð5Þ
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to Eqs. (1)–(3) and we find that Eq. (1) is identically

satisfied and Eqs. (2) and (3) for the VWT case reduce to

½ð1þ n1gÞf 00	0 þ 2�1ff 00 � mð1þ n1gÞ1=2n1=2f 00 þ knh

¼ nðf 0of 0=on � f 00of =onÞ; ð6Þ

Pr�1½ð1þ n1gÞh0	0 þ 2�1f h0 � mð1þ n1gÞ1=2n1=2h0

¼ nðf 0oh0=on � h0of =onÞ: ð7Þ

The boundary conditions (4) for the VWT case can be

re-written as

f ðn; 0Þ ¼ f 0ðn; 0Þ ¼ 0; f 0ðn;1Þ ¼ 1; hðn;1Þ ¼ 0;

hðn; 0Þ ¼ �2ðn � niÞðnj � nÞ=ðnj � niÞ2 for ni 6 n6 nj;

hðn; 0Þ ¼ 0 for 06 n6 ni; nP nj:

ð8Þ

For VHF case, the equations corresponding to (6)

and (7) can be expressed as

½ð1þ n1gÞf 00	0 þ 2�1ff 00 � mð1þ n1gÞ1=2n1=2f 00 þ k�n3=2h

¼ nðf 0of 0on � f 00of =onÞ; ð9Þ

Pr�1½ð1þ n1gÞh0	0 þ 2�1ðf h0 � f 0hÞ � mð1þ n1gÞ1=2n1=2h0

¼ nðf 0oh=on � h0of =onÞ: ð10Þ

The boundary conditions for this case are

f ðn;0Þ¼ f 0ðn;0Þ¼ 0; f 0ðn;1Þ¼ 1; hðn;1Þ¼ 0;

h0ðn;0Þ¼�1� �3ðn�niÞðnj�nÞðnj�niÞ�2

for ni6n6nj;

h0ðn;0Þ¼�1 for 06n6ni; nPnj;

ð11Þ

where

T ðr; xÞ � T1 ¼ ðq0=kÞxðr=RÞ�1Re�1=2x hðn; gÞ;

Gr�R ¼ gbq0R4=ðkm2Þ; k� ¼ Gr�R=Re
5=2
R ;

qw=q0 ¼ �1� �3ðn � niÞðnj � nÞðnj � niÞ�2

for ni 6 n6 nj;

qw=q0 ¼ �1 for 06 n6 ni; n P nj:

ð12Þ

Here n and g are transformed coordinates, w and f are
the dimensional and dimensionless stream functions,

respectively, f 0 is the dimensionless velocity, n1 is the
curvature parameter, h is the dimensionless temperature,
ReR and Rex are the Reynolds numbers with respect to R
and x, respectively, k and k� are the buoyancy parame-

ters for VWT and VHF cases, respectively, GrR and Gr�R
are the Grashof numbers for the VWT and VHF cases,

respectively, m denotes the mass transfer distribution, Pr
is the Prandtl number, and prime denotes derivative with

respect to g.
The local skin friction coefficient Cfx and the local

heat transfer coefficient in terms of the local Nusselt

number Nux can be expressed as

Cfx ¼ lðou=orÞr¼R=qu
2
1 ¼ Re�1=2x f 00ðn; 0Þ;

Nux ¼ �xðoT=orÞr¼R=ðT0 � T1Þ ¼ �Re1=2x h0ðn; 0Þ

ðVWT caseÞ;

Nux ¼ Re1=2x =hðn; 0Þ ðVHF caseÞ;

ð13Þ

where l is the coefficient of viscosity.
It may be noted that Eqs. (6)–(11) in the absence

of cooling/heating of the wall and injection/suction

(�1 ¼ �2 ¼ �3 ¼ m ¼ 0) are the same as those of Chen
and Mucoglu [1] and Mucoglu and Chen [2] if we apply

the following transformations:

g ¼ 2g�; n ¼ 4�1Re1=2x n�; f ðn; gÞ ¼ f �ðn�; g�Þ;

hðn; gÞ ¼ h�ðn�; g�Þ; ð14Þ

and replace kn and k�n3=2 in Eqs. (6) and (9) by X and

X�, respectively.
3. Numerical method

The nonlinear coupled parabolic partial differential

equations (6) and (7) under boundary conditions (8) and

Eqs. (9) and (10) under conditions (11) have been solved

numerically by using an implicit, iterative tridiagonal

finite-difference method similar to that discussed by

Blottner [14]. All the first-order derivatives with respect

to n are replaced by two-point backward difference

formulae of the form

oH=on ¼ ðHi;j � Hi�1;jÞ=Dn; ð15Þ

where H is any dependent variable and i and j are the
node locations along n and g directions, respectively.
First the third-order partial differential equations (6)

and (9) are converted into second-order by substituting

f 0 ¼ F . Then these second-order equations are discret-
ized by using three-point central difference formulae

while all the first-order differential equations are dis-

cretized by applying the trapezoidal rule. The function f
is calculated from f ¼

R g
0
F dg. The nonlinear terms are

evaluated at the previous iteration. At each line of

constant n, a system of algebraic equations is obtained.

These algebraic equations are solved iteratively by using

the Thomas algorithm (see Blottner [14]). The same

process is repeated for the next n value and the equations
are solved line by line until the desired n value is

reached. A convergence criterion based on the relative

difference between the current and the previous iteration

is used. When this difference reaches 10�5, the solution is

assumed to have converged and the iterative process is

terminated.
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The effect of the grid size Dg and Dn and the edge of
the boundary layer g1 on the solutions is also examined.

The results presented here are independent of the grid

size and g1 at least up to the 3rd decimal place. Here we

have taken Dg ¼ 0:05, Dn ¼ 0:02 and g1 ¼ 10.
4. Results and discussion

In order to assess the accuracy of our method, we

have compared the surface skin friction coefficient

ðRe1=2x CfxÞ and the Nusselt number ðRe�1=2x NuxÞ for the
VWT case when �1 ¼ �2 ¼ m ¼ 0 with those of Chen and
Mucoglu [1]. The corresponding results for the VHF

case have been compared with those of Mucoglu and

Chen [2]. In both the cases, the results are found to be in

very good agreement. The comparison is presented in

Tables 1 and 2.

It may be noted that for computation, we have taken

to slots in the intervals ½0:5; 0:8	 and ½1:2; 1:5	. The wall is
cooled or heated in these intervals and in the remaining

portion the wall is at a constant temperature T0 ð> T1Þ.
Also injection or suction is applied only in these slots.

In the remaining portion of the wall, the wall is non-

permeable. Similarly, the heat flux is imposed only in

these slots. We have taken ReR ¼ 103.
Table 1

Comparison of skin friction and heat transfer results (Re1=2x Cfx;Re�1=2x

n X Present results

Re1=2x Cfx Re�1=2x Nux

0 0 1.3281 0.5854

0 1 4.9663 0.8219

0 2 7.7119 0.9302

1 0 1.9167 0.8666

1 1 5.2578 1.0617

1 2 7.8863 1.1685

2 0 2.3975 1.0963

2 1 5.6993 1.2712

2 2 8.3555 1.3741

Table 2

Comparison of skin friction (Re1=2x Cfx) and reciprocal of heat transfer

n X� Present results

Re1=2x Cfx Re1=2x ðNuxÞ�1

0 0 1.3281 2.4636

0 1.0 6.3659 1.7922

0 1.5 8.0157 1.6908

1 0 1.9108 1.8539

1 1.0 5.9407 1.4701

1 1.5 7.3443 1.3965

2 0 2.3840 1.5337

2 1.0 5.9312 1.3001

2 1.5 7.2546 1.2450
Figs. 2 and 3 show the effect of wall cooling ð�2 < 0Þ
and wall heating ð�2 > 0Þ on the skin friction coefficient
ðRe1=2x CfxÞ and the Nusselt number ðRe�1=2x NuxÞ for the
VWT case when k ¼ 0 and 1, �1 ¼ 0, 06 n6 2, Pr ¼ 0:7.
The results for �2 ¼ 0 (without heating or cooling) are
also shown. The effect of wall cooling/heating in the two

slots is found to be more pronounced on the Nusselt

number than on the skin friction, because wall cooling/

heating directly affects the thermal field, where as its

effect on the velocity field is indirect. In the region be-

yond the slots, the Nusselt number for the wall cooling

ð�2 < 0Þ is more than that of the wall heating. This be-
haviour is due to the fact that for the wall cooling the

temperature difference between the wall and the fluid

near the wall increases. Consequently, the temperature

gradient and hence the heat transfer (Nusselt number)

increase. The effect of wall heating is opposite to that of

the wall cooling, but it is not a mirror reflection of the

wall cooling. Since the positive buoyancy force ðk > 0Þ,
which assist the flow, acts like a favourable pressure

gradient, the fluid in the boundary layer gets accelerated.

This in turn reduces the momentum and thermal

boundary layer thicknesses. Consequently, both the ve-

locity and temperature gradients and hence the skin

friction and the Nusselt number increase with k. Since
the buoyancy parameter k is multiplied by n (see Eq. (6)),
Nux) for VWT case when �1 ¼ �2 ¼ m ¼ 0, Pr ¼ 0:7
Chen and Mucoglu [1]

Re1=2x Cfx Re�1=2x Nux

1.3282 0.5854

4.9668 0.8221

7.7126 0.9305

1.9172 0.8669

5.2584 1.0621

7.8871 1.1690

2.3981 1.0968

5.7001 1.2718

8.3566 1.3747

(Re1=2x ðNuxÞ�1) for VHF case when �1 ¼ �3 ¼ m ¼ 0, Pr ¼ 0:7
Chen and Mucoglu [2]

Re1=2x Cfx Re1=2x ðNuxÞ�1

1.3282 2.4637

6.3665 1.7923

8.0165 1.6911

1.9113 1.8543

5.9414 1.4705

7.3451 1.3970

2.3847 1.5343

5.9322 1.3007

7.2558 1.2458



Fig. 2. Effect of wall cooling/heating on the skin friction coef-

ficient Re1=2x Cfx for k ¼ �0:25, 0 and 1, �1 ¼ 0, Pr ¼ 0:7 (VWT
case).

Fig. 3. Effect of wall cooling/heating on the Nusselt number

Re�1=2x Nux for k ¼ �0:25, 0 and 1, �1 ¼ 0, Pr ¼ 0:7 (VWT case).

Fig. 4. Effect of injection/suction on the skin friction coefficient

Re1=2x Cfx for k ¼ 1, �2 ¼ 0, Pr ¼ 0:7 (VWT case).

Fig. 5. Effect of injection/suction on the Nusselt number

Re�1=2x Nux for k ¼ 1, �2 ¼ 0, Pr ¼ 0:7 (VWT case).
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the effect of the buoyancy parameter vanishes at n ¼ 0,
but increases with n. For a fixed k, both the skin friction
and the Nusselt number increase with n, because the
velocity and temperature gradients at and near the wall

increase with n. It may be noted that the thermal

boundary layer is thicker than the momentum boundary

layer. Since the negative buoyancy parameter ðk < 0Þ
acts like an adverse pressure gradient, the momentum

and thermal boundary layers grow. Consequently, the
skin friction and heat transfer are reduced. Further for

k < 0, the skin friction decreases with increasing n, but
the heat transfer increases.

Figs. 4 and 5 present the effect of injection ð�1 > 0Þ,
suction ð�1 < 0Þ and without cooling/heating ð�2 ¼ 0Þ on
the skin friction coefficient ðRe1=2x CfxÞ and the Nusselt
number ðRe�1=2x NuxÞ for the VWT case when k ¼ 1,
Pr ¼ 0:7, �2 ¼ 0, 06 n6 2. Both the skin friction and the
Nusselt number decrease due to injection, but they in-
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crease due to suction. This trend is due to the growth in

the momentum and thermal boundary layers caused by

injection. The effect of suction is opposite to that of

injection, but it is not the mirror reflection of each other.

Figs. 6–8 give the corresponding results for the

Nusselt number and the skin friction coefficient for

the variable/constant heat flux case (VHF/CHF case).

The results are found to be qualitatively similar to those
Fig. 6. Effect of reduction/increase of wall heat flux on the

Nusselt number Re�1=2x Nux for k� ¼ 1, �1 ¼ 0, Pr ¼ 0:7 (VHF
case).

Fig. 7. Effect of injection/suction on the skin friction coefficient

Re1=2x Cfx for k� ¼ 1, �3 ¼ 0, Pr ¼ 0:7 (CHF case).

Fig. 8. Effect of injection/suction on the Nusselt number

Re�1=2x Nux for k� ¼ 1, �3 ¼ 0, Pr ¼ 0:7 (CHF case).
of the VWT/CWT case. Hence they are not discussed

here. The Nusselt number and the skin friction coeffi-

cient for the VHF/CHF case are more than those of the

VWT/CWT case.
5. Conclusions

The effect of the localized cooling/heating is found to

be more pronounced on the Nusselt number than on the

skin friction coefficient. Also the effect of the localized

heating and suction is not a mirror reflection of cooling

and injection, respectively. The Nusselt number and skin

friction coefficient increase with the positive buoyancy

force and suction, but they reduce due to injection. The

skin friction and the Nusselt number for the variable/

constant heat flux case are more than those of the

variable/constant wall temperature case.
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